The size of RNA as an ideal branched polymer.

نویسندگان

  • Li Tai Fang
  • William M Gelbart
  • Avinoam Ben-Shaul
چکیده

Because of the branching arising from partial self-complementarity, long single-stranded (ss) RNA molecules are significantly more compact than linear arrangements (e.g., denatured states) of the same sequence of monomers. To elucidate the dependence of compactness on the nature and extent of branching, we represent ssRNA secondary structures as tree graphs which we treat as ideal branched polymers, and use a theorem of Kramers for evaluating their root-mean-square radius of gyration, ̂R(g)=√R(g)(2). We consider two sets of sequences--random and viral--with nucleotide sequence lengths (N) ranging from 100 to 10,000. The RNAs of icosahedral viruses are shown to be more compact (i.e., to have smaller ̂R(g)) than the random RNAs. For the random sequences we find that ̂R(g) varies as N(1/3). These results are contrasted with the scaling of ̂R(g) for ideal randomly branched polymers (N(1/4)), and with that from recent modeling of (relatively short, N ≤ 161) RNA tertiary structures (N(2/5)).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The influence of branching efficiency on the rheology and morphology of melt state long chain branched polypropylene/polybutene-1 blends

In this study, the compatibility of the blends of polypropylene (PP) and polybutene-1(PB-1) homopolymer before and after long chain branching process were studied. The blends were prepared and long-chain branched directly via reactive extrusion process in presence of free radical initiator and trimethylolpropane tri methacrylate (TMPTMA) poly functional monomer. The optimum percentage of TMPTMA...

متن کامل

Fabrication of Organic Solar Cells with Branched Cauliflower-Like Nano Structures as a Back Electrode Replicated from a Natural Template of Cicada Wing Patterns

Nanostructures of noble metal materials have been used in organic solar cells for enhancement of performance and light trapping. In this study, we have introduced branched silver cauliflower-like nanopatterns as sub-wavelength structured metal grating in organic solar cells. Self-assembled fabrication process of branched nanopatterns was carried out on a bio-template of cicada wing nanonipple a...

متن کامل

How long does it take to pull an ideal polymer into a small hole?

We present scaling estimates for characteristic times taulin and taubr of pulling ideal linear and randomly branched polymers of N monomers into a small hole by a force f. We show that the absorbtion process develops as sequential straightening of folds of the initial polymer configuration. By estimating the typical size of the fold involved into the motion, we arrive at the following predictio...

متن کامل

Effect of Chain Transfer to Polymer in Conventional and Living Emulsion Polymerization Process

Emulsion polymerization process provides a unique polymerization locus that has a confined tiny space with a higher polymer concentration, compared with the corresponding bulk polymerization, especially for the ab initio emulsion polymerization. Assuming the ideal polymerization kinetics and a constant polymer/monomer ratio, the effect of such a unique reaction environment is explored for both ...

متن کامل

RNA Loading on Nano-Structured Hyperbranched β-Cyclodextrin

Background β-Cyclodextrin functionalized hyper-branched polyglycerol (HBCD: β-CD-g-PG), a biocompatible polymer, has recently been proposed for delivery of poorly water soluble compounds. Methods The present study examines the interaction of HBCD with RNA, utilizing a constant concentration of RNA and different HBCD/RNA ratios of 1/16 to 1/1, at physiological condition in an aqueous solution....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 135 15  شماره 

صفحات  -

تاریخ انتشار 2011